WORKSHEET CHAPWISE - 1

12th Standard CBSE

Maths Relations and Functions

Total Mark : 39

1 Mark Questions	5 x 1 = 5
1) Given set A = {a, b, c}. An identity relation in set A is	
(a) $R = \{(a, b), (a, c)\}$ (b) $R = \{(a, a), (b, b), (c, c)\}$ (c) $R = \{(a, a), (b, b), (c, c), (a, c)\}$ (d) $R = \{(c, a), (b, a), (a, a)\}$	
2) Given triangles with sides $T_1 : 3, 4, 5; T_2 : 5, 12, 13; T_3 : 6, 8, 10; T_4 : 4, 7, 9 and a relation R in set of triangles defined as R = \{(\Delta_1, \Delta_2) : \Delta_1 \text{ is similar to } \Delta_2\}. Which triangles belong to the same equivalence class?(a) T_1 and T_2 (b) T_2 and T_3 (c) T_1 and T_3 (d) T_1 and T_4$	
 3) A relation S in the set of real numbers is defined as xSy ⇒ x - y+ √3 is an irrational number, then relation S i (a) reflexive (b) reflexive and symmetric (c) transitive (d) symmetric and transitive 	S
4) Let R be a relation on the set L of lines defined by $l_1 R l_2$ if l_1 is perpendicular to l_2 , then relation R is (a) reflexive and symmetric (b) symmetric and transitive (c) equivalence relation (d) symmetric	
 5) Given set A ={1, 2, 3} and a relation R = {(1, 2), (2, 1)}, the relation R will be (a) reflexive if (1, 1) is added (b) symmetric if (2, 3) is added (c) transitive if (1, 1) is added (d) symmetric if (3, 2) is added 	
2 Mark Questions	5 x 2 = 10
6) Define symmetric Relation.Give one example	
7) Define Transitive Relation. Give one example.	
 8) Given an example of a relation which is (i) Reflexive, Symmetric and transitive (ii) Reflexing Community and matter activities 	
(ii) Reflexive, Symmetric and not transitive.	
⁹⁾ Define Reflexive.Give one example.	
10) Let f: $X \to Y$ be a function Define a relation R on X given be R=[(a,b); (f(b)] Show that R is an equivalence relation ?	
4 Mark Questions	5 x 4 = 20

11) Show that the relation R defined by (a,b) R (c,d) \Rightarrow a+d=b+c on the set N x N is an equivalence relation.

12) Let f:N \rightarrow N be	defined by $f(n)=iggl\{$	$\left(\frac{n+1}{2}, \text{ if } n \text{ is odd.} \right)$ $\left(\frac{n}{2}, \text{ if } n \text{ is even} \right)$	for all $n \in N$ State whether the functions f is onto,	
one-one or bijec	tive.Justify your ans	wer		
13) Prove that the	relation R in the set	A={1,2,3,4,5} given	by R={(a,b): a-b is even}, is an equivalence relation.	
14) Let Z be the se 5}. Prove that R i	et of all integers and s s an equivalence rela	R be the relation on ation.	Z defined as R={(a,b):a,b \in Z, and (a-b) is divisible by	
¹⁵⁾ Let T be the set T_1, T_2 T}. Show t	et of all triangles in a hat R is an equivaler	plane with R a relat ce relation.	tion in T given by $R = \{(T_1, T_2): T_1 \text{ is conguruent to } T_2 \text{ and } $	
4 Mark Questions	5		1 x 4	4 = 4
16) A relation R or	ו a set A is said to be	an equivalence rela	ition on A iff it is	
(a) Reflexive i.e	$,(a,a)\in R \ orall \ a\in A$			
(b) Symmetric i.e	e., $(a,b)\in R\Rightarrow (b,c)$	$(a)\in R \ orall \ a,b\in A$		
(c) Transitive i.e.	, $(a,b)\in R$ and (b,a)	$(c)\in R \Rightarrow (a,c)\in R$	$R orall a, b, c \in A$	
Based on the ab	ove information, ans	wer the following q	uestions.	
(i) If the relation	$R = \{(1, 1), (1, 2), (1, 3)\}$	8), (2,2), (2, 3), (3,1),	(3, 2), (3, 3)} defined on the set A = {1, 2, 3}, then R is	
(a) reflexive	(b) symmetric	(c) transitive	(d) equivalence	
(ii) If the relation	$R = \{(1, 2), (2, 1), (1, 3)\}$	3), (3, I)} defined on	the setA = {1, 2, 3}, then R is	
(a) reflexive	(b) symmetric	(c) transitive	(d) equivalence	
(iii) If the relatio	n R on the set N of al	l natural numbers d	lefined as R = {(x, y) : y = x + 5 and x < 4}, then R is	
(a) reflexive	(b) symmetric	(c) transitive	(d) equivalence	
(iv) If the relation	ו R on the set A = {1, מ	2, 3, , 13, 14}defined	l as R = {(x, y) : 3x - y = 0}, then R is	
(a) reflexive	(b) symmetric	(c) transitive	(d) equivalence	