WORKSHEET CHAPWISE-1
 12th Standard CBSE
 Maths
 Relations and Functions

Total Mark : 39

1 Mark Questions

1)

Given set $A=\{a, b, c)$. An identity relation in set A is
(a) $\mathrm{R}=\{(\mathrm{a}, \mathrm{b}),(\mathrm{a}, \mathrm{c})\}$
(b) $R=\{(a, a),(b, b),(c, c)\}$
(c) $R=\{(a, a),(b, b),(c, c),(a, c)\}$
(d) $R=\{(c, a),(b, a),(a, a)\}$
2)

Given triangles with sides $T_{1}: 3,4,5 ; T_{2}: 5,12,13 ; T_{3}: 6,8,10 ; T_{4}: 4,7,9$ and a relation R in set of triangles defined as $\mathrm{R}=\left\{\left(\Delta_{1}, \Delta_{2}\right): \Delta_{1}\right.$ is similar to $\left.\Delta_{2}\right\}$. Which triangles belong to the same equivalence class?
(a) T_{1} and T_{2}
(b) T_{2} and T_{3}
(c) T_{1} and T_{3}
(d) T_{1} and T_{4}
3)

A relation S in the set of real numbers is defined as $x S y \Rightarrow x-y+\sqrt{3}$ is an irrational number, then relation S is
(a) reflexive
(b) reflexive and symmetric
(c) transitive
(d) symmetric and transitive
4)

Let R be a relation on the set L of lines defined by $l_{1} R l_{2}$ if l_{1} is perpendicular to l_{2}, then relation R is
(a) reflexive and symmetric
(b) symmetric and transitive
(c) equivalence relation
(d) symmetric
5)

Given set $\mathrm{A}=\{1,2,3\}$ and a relation $\mathrm{R}=\{(1,2),(2,1)\}$, the relation R will be
(a) reflexive if $(1,1)$ is added
(b) symmetric if $(2,3)$ is added
(c) transitive if $(1,1)$ is added
(d) symmetric if $(3,2)$ is added

2 Mark Questions

6)

Define symmetric Relation.Give one example
7)

Define Transitive Relation. Give one example.
8)

Given an example of a relation which is
(i) Reflexive, Symmetric and transitive
(ii) Reflexive, Symmetric and not transitive.
9)

Define Reflexive.Give one example.
10)

Let $\mathrm{f}: X \rightarrow Y$ be a function Define a relation R on X given be $\mathrm{R}=[(\mathrm{a}, \mathrm{b}) ;(\mathrm{f}(\mathrm{b})]$ Show that R is an equivalence relation?

4 Mark Questions

11)

Show that the relation R defined by $(a, b) R(c, d) \Rightarrow a+d=b+c$ on the set $N x N$ is an equivalence relation.
12)

Let $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}$ be defined by $f(n)=\left\{\begin{array}{l}\frac{n+1}{2}, \text { if } n \text { is odd. } \\ \frac{n}{2}, \text { if } n \text { is even }\end{array}\right.$ for all $n \in N$ State whether the functions f is onto, one-one or bijective.Justify your answer
13)

Prove that the relation R in the set $A=\{1,2,3,4,5\}$ given by $R=\{(a, b):|a-b|$ is even $\}$, is an equivalence relation.
14)

Let Z be the set of all integers and R be the relation on Z defined as $R=\{(a, b): a, b \in Z$, and ($a-b$) is divisible by $5\}$. Prove that R is an equivalence relation.
15)

Let T be the set of all triangles in a plane with R a relation in T given by $R=\left\{\left(T_{1}, T_{2}\right): T_{1}\right.$ is conguruent to T_{2} and $\left.T_{1}, T_{2} T\right\}$. Show that R is an equivalence relation.

4 Mark Questions

16)

A relation R on a set A is said to be an equivalence relation on A iff it is
(a) Reflexive i.e.., $(a, a) \in R \forall a \in A$
(b) Symmetric i.e., $(a, b) \in R \Rightarrow(b, a) \in R \forall a, b \in A$
(c) Transitive i.e., $(a, b) \in R$ and $(b, c) \in R \Rightarrow(a, c) \in R \forall a, b, c \in A$

Based on the above information, answer the following questions.
(i) If the relation $R=\{(1,1),(1,2),(1,3),(2,2),(2,3),(3,1),(3,2),(3,3)\}$ defined on the set $A=\{1,2,3\}$, then R is
(a) reflexive
(b) symmetric
(c) transitive
(d) equivalence
(ii) If the relation $R=\{(1,2),(2,1),(1,3),(3, I)\}$ defined on the set $A=\{1,2,3\}$, then R is
(a) reflexive
(b) symmetric
(c) transitive
(d) equivalence
(iii) If the relation R on the set N of all natural numbers defined as $R=\{(x, y): y=x+5$ and $x<4\}$, then R is
(a) reflexive
(b) symmetric
(c) transitive
(d) equivalence
(iv) If the relation R on the set $A=\{1,2,3,, 13,14\}$ defined as $R=\{(x, y): 3 x-y=0\}$, then R is
(a) reflexive
(b) symmetric
(c) transitive
(d) equivalence

